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ABSTRACT
State-of-the-art consensus protocols like Paxos reveal the
values being agreed upon to all nodes, but some deploy-
ment scenarios involving a subset of nodes outsourced to
public cloud providers motivate hiding the value. In this
work, we present the primary-backup secret-shared state ma-
chine (PBSSM) architecture and an underlying consensus
protocol Oblivious Paxos (OPaxos) that enable strong consis-
tency, high availability, privacy, and fast common-case per-
formance. OPaxos enables privacy-preserving consensus by
allowing acceptors to safely agree on a secret-shared value
without untrusted acceptors knowing the value. We also
present Fast Oblivious Paxos (Fast-OPaxos), which enables
consensus over secret-shares in three one-way delays under
low concurrency settings. Our prototype-driven microbench-
marks and smarthome case study show that OPaxos induces
a negligible latency overhead of at most 0.1 ms compared to
Paxos while maintaining more than 85% of Paxos’ capacity
for small requests, and can provide lower latency and higher
capacity compared to Paxos for large request sizes.
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1 INTRODUCTION
Consensus is a fundamental building block for highly avail-
able distributed systems with strong consistency, however
state-of-the-art consensus protocols like Paxos [33] and oth-
ers suffer from a critical privacy drawback: the agreement
protocol reveals the value being agreed upon to all replica
servers. Traditional approaches such as the replicated state
machine (RSM) [55] need replicas to be able to view the
underlying application state in order to execute requests.
But exposing the request values and state is problematic in
deployment scenarios managing sensitive information and
outsourcing infrastructure to untrusted cloud providers that
may be honest but curious.

Building general consensus-based services managing sen-
sitive information on untrusted public clouds is challenging.
Purist approaches to this end include secure multiparty com-
putation (SMPC) [15] and fully homomorphic encryption
(FHE) [17] that are powerful in their generality, but despite
much progress on both fronts in recent years, remain prohib-
itively costly for general services today. Secure computing
hardware, e.g., Intel’s SGX, combined with oblivious RAM
techniques [18] is another option in the design space with
lower overhead but stronger trust assumptions and weaker
privacy guarantees. None of these offer information-theoretic
privacy [57], i.e., resilience against an adversary with un-
bounded computation power, our overarching design goal,
while ensuring strong consistency, high availability, and fast
common-case performance for general services, a quartet of
design goals that is fundamentally challenging.
Hybrid clouds, a widely used infrastructure setup today,

offer a distinct opportunity to come closer to the above ideal
quartet of design goals. Hybrid cloud deployments involve a
subset of trusted servers on premises while relying on un-
trusted cloud servers for availability despite failures. The
availability of trusted servers in the common case makes it
easier to maintain fast common-case performance provided
we can smoothly failover to untrusted servers alone while
continuing to preserve as much of the applications’ func-
tionality and as close to information-theoretic privacy as
is practically feasible. Our position is that this point in the
design space offers better tradeoffs in practice to the alterna-
tive of not having information-theoretic privacy at all and/or
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being limited to services for which the overhead of SMPC,
FHE, or secure computing infrastructure is acceptable.
To that end, we present a novel architecture, primary-

backup secret-shared state machine (PBSSM), for building
highly available services with strong consistency require-
ments that ensures information-theoretic privacy of request
values as well as underlying state in the common-case when
at least one trusted server is available. In the event of failure
of all trusted servers, PBSSM gracefully fails over to one
of two modes: (1) a client-driven mode suitable for appli-
cations with client-partitioned state (e.g., key-value store
operations with keys identifying clients) wherein a trusted
client can play the role of a trusted primary; or (2) more
general operations relying on SMPC with commensurate
overhead and real-world ideal-world privacy (weaker than
information-theoretic privacy as detailed in §3.1).

The key technical innovation that drives PBSSM is Oblivi-
ous Paxos (OPaxos), a privacy-preserving consensus protocol
that provides information-theoretic privacy by integrating
secret-sharing into the Paxos family of consensus protocols
while preserving its traditional safety and liveness properties.
OPaxos uses (𝑡, 𝑛) threshold secret-sharing that generates 𝑛
secret-shares from a single secret value in a manner that en-
ables us to reconstruct the secret with just 𝑡 shares, for a con-
figurable 𝑡 ∈ [1, 𝑛]. The protocol requires at least 𝑡 acceptors
as the intersection between quorums in the two Paxos phases
as opposed to the traditional non-zero intersection require-
ment (e.g., using majority quorums for both phases). While
previous works [47, 63, 70] have leveraged 𝑡-intersection of
acceptor quorums for performance reasons, to the best of
our knowledge, this work is the first to ensure the privacy re-
quirement, one that introduces subtle design differences–yet
important to ensure agreement safety–while also enabling
unique performance optimization opportunities (detailed in
§4). OPaxos can also be used outside the PBSSM context in
existing distributed storage systems [7, 19, 32, 38, 40, 59] that
do use secret sharing for privacy against untrusted servers
but rely on an external coordination service (entailing latency
overhead) to ensure consistency under failures or concur-
rency by offering a general-purpose consensus protocol with
in-built privacy.
Given our focus on hybrid cloud scenarios, it is natural

to consider the seemingly more straightforward alternative
of having the trusted consensus leader simply encrypt re-
quest values when at least one trusted server is available.
However, encryption carries two fundamental drawbacks:
(1) it does not offer information-theoretic privacy, instead
relying on assumptions on an adversary’s computational
resources, and in practice induces vulnerability to key theft
and/or increased key management complexity to thwart
them; (2) it poses an inconvenient cost-availability trade-
off as the system must rely on an external trusted key escrow

Figure 1: System and threat model: Clients’ data must
remain private from the untrusted servers placed at
different cloud providers.

service as otherwise (permanent) failure of internal trusted
nodes possessing the key can cause (permanent) data irrecov-
erability. Finally, as detailed in §3.1 and our experimental
evaluation, secret-sharing allows us to naturally leverage re-
cent advances in SMPC (compared to FHE) for more general
services when no trusted server is available with overhead
comparable to simple encryption.

We build further upon the OPaxos design to develop Fast
Oblivious Paxos (Fast-OPaxos), an optimization similar in
spirit to Fast-Paxos vis a vis classic Paxos. Fast-OPaxos en-
ables a client to receive a commit confirmation in three one-
way delays while being leader-oblivious, one less than in the
case of leader-aware traditional Paxos. Fast-OPaxos design
improves both latency and throughput with a single trusted
proposing client or in general when conflicts are rare

We have implemented an open-source prototype for OPaxos
and Fast-OPaxos, and a prototype key-value store embodying
the PBSSM approach on top of OPaxos. Through prototype-
driven experiments, we show that compared to Paxos, the
secret-sharing overhead in OPaxos entails only a modest la-
tency and capacity overhead, in part because of the reduced
size of secret shares as well as hardware support such as
SIMD and AES-NI in modern CPUs enabling fast crypto-
graphic operations. For small request values, our OPaxos
prototype induces a latency overhead of less than 0.1 ms
while providing over 85% of non privacy-preserving Paxos’
capacity; while for large requests, OPaxos can improve both
latency and capacity.

We further demonstrate the end-to-end benefits of OPaxos
via a case study of a modern smart-home systemwith trusted
servers residing within the home and the traditional smart-
home cloud service distributed acrossmultiple (non-colluding)
cloud providers, thereby providing high availability and lin-
earizable consistency while limiting the perimeter of private
information leakage to within the trusted home zone.

In summary, our primary contribution is a novel architec-
ture, primary-backup secret-shared state machine, to build



Oblivious Paxos: Privacy-Preserving Consensus Over Secret-Shares SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

fault-tolerant distributed services with strong consistency
while ensuring information-theoretic privacy, and comprises
the following technical sub-contributions:
(1) Design and implementation of OPaxos (§4) with a rig-

orous formal proof of safety as well as model check-
ing (§4.4), and a Fast-OPaxos optimization (§4.5);

(2) Prototype-driven evaluation of OPaxos (§7) showing
modest latency and capacity overhead in general and
improved latency and capacity for large requests;

(3) Case study evaluation of a smart-home system based
on OPaxos (§8.2) in a multi-cloud deployment setting.

2 PROBLEM MODEL AND BACKGROUND
This section describes our system, threat and failure model.

2.1 System, Threat, and Failure Models
System model. Our target scenario, as illustrated in Fig-
ure 1, is a highly available general service (or state machine)
to manage private client data that is provided by a collection
of 𝑛 servers some of which are trusted and others untrusted.
The untrusted servers must not know anything about the
managed client data or client requests that act upon that
state. The trusted subset of servers implement service exe-
cution, i.e., computation and state management in response
to client requests, while the untrusted servers may be re-
lied upon to ensure availability in the face of temporary or
permanent server failures. The system must ensure strong
linearizability consistency1. An example scenario is a smart-
home management service wherein the trusted nodes reside
within the home limiting the perimeter of sensitive informa-
tion leakage to the home; another is a distributed password
management or a client account management system in a hy-
brid cloud setup wherein the trusted nodes are on-premises
while the untrusted nodes are on third-party clouds. Lack of
strong consistency in such systems can compromise safety,
e.g., they can compromise security in a smart-home if the
surveillance devices or smart locks do not reflect the most
recent configured routines.

Threat and failure model. The trusted servers and clients
mutually trust each other. The untrusted servers are assumed
to be honest but curious, i.e., they are expected to execute
the protocol correctly but may try to glean any information
they can from received protocol messages. The network en-
vironment is asynchronous and any node may experience
a temporary crash or a permanent failure that may render
any state on it irrecoverable. The non-byzantine crash failure
model is consistent with the honest-but-curious threat model
for untrusted servers, nevertheless untrusted serversmay col-
lude with each other provided less than 𝑡 untrusted servers

1This basic model also generalizes to services with weaker consistency
semantics that can be satisfied using consensus as a building block.

collude, where 𝑡 is an a priori known limit. Our threat model
precludes side-channel attacks based onmessage size, timing,
etc. Both encryption-based and information-theoretically
private approaches in general are susceptible to such side-
channel attacks and require additional mechanisms exten-
sively studied by others to thwart them [14, 41, 42] that are
outside the scope of this work.
2.2 Background Primers
OPaxos builds upon Paxos so as to offer information-

theoretic privacy among other design goals. We include brief
primers of Paxos [34] and information-theoretic privacy [57].

Paxos is an asynchronous distributed consensus protocol
enabling a fixed set of nodes to propose values and agree
upon one of those proposals as the chosen decision. Paxos
proceeds in increasing, ordered rounds (also called ballots)
many-to-one mapped to proposing nodes. A proposing node
attempts to complete two phases in its current round: (i) a
prepare phase wherein a proposer attempts to get a prepare
quorum (or Q1) of acceptors to affirm its round number by
promising not to accept values in lower rounds and report
their respective accepted values if any in the highest lower
round; and subsequently (ii) an accept phase in which it actu-
ally proposes its value and seeks to get an accept quorum (or
Q2) of acceptors to accept that value while respecting their
respective promises in the prepare phase. Paxos ensures the
safety property that only a single proposal can be chosen as
the decision by restricting the proposable value in the second
phase based on the values if any reported in the first phase.
Paxos requires that the intersection of any Q1 quorum and
Q2 quorum is nonempty (e.g., both majorities).

Information-theoretic privacy guarantees that no infor-
mation about protected data is revealed to adversaries even
with unlimited computational resources and time. Information-
theoretic privacy-preserving schemes, of which secret-sharing
is a well-known example, do not rely on a key and ensure that
any adversary with less than the threshold number of shares
would find all potential secret values equiprobable, thereby
learning no information about the secret [57]. In compari-
son, encryption-based approaches necessarily make limiting
assumptions about the adversary’s computation power, e.g.,
hardness of factoring the product of large primes, to ensure
privacy [13]. Furthermore, in practice, encryption-based ap-
proaches are also vulnerable to key theft and/or entail ad-
ditional key management complexity to thwart them, and
must rely on a key escrow mechanism to protect against
accidental key loss that can potentially render encrypted
data permanently unavailable.

3 OPAXOS SYSTEM ARCHITECTURE
OPaxos targets the following design goals, the combination
of which is both novel and nontrivial to achieve
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Mode Application class Privacy property Mechanism Example scenarios

Trusted General State Machine Information-Theoretic PBSSM (§3.2) Warehouse system (§7.4),
Smart-home system (§8.2)

Untrusted Client-Partitioned State Machine Information-Theoretic CPSSM (§5.1) Private key-value store (§7.5)
General State Machine Ideal World/ Real World SMPC (§5.1) Private data analytics [38, 49, 66]

Table 1: An OPaxos-based system’s operational modes.

(1) Common-case performance: Low OPaxos overhead
when at least one trusted server is up.

(2) Seamless failover: Seamless high availability despite
server failures including failure of all trusted servers.

(3) Information-theoretic privacy: Ensuring that un-
trusted servers, even with unbounded resources, do
not learn anything about the client state or requests.

(4) Strong consistency: Support for general applications
with strong state consistency constraints.

Strictly achieving all of the above goals with approaches
known today is very challenging, if at all possible, so OPaxos’
goal is to come as close to them as possible. To better under-
stand the challenge, let’s consider a few natural alternatives.

3.1 State-of-the-art Alternatives Analysis
A straightforward approach is encryptionwherein the trusted
servers can be viewed as a trusted proxy commonly used
in privacy-preserving data stores that encrypts client re-
quests before agreeing upon their order in coordination with
the untrusted backups. Encryption-based approaches how-
ever suffer from several drawbacks. First, they do not afford
information-theoretic privacy by definition making them
vulnerable to key compromise, theft, or trapdoors. Second,
they necessitate additional infrastructure in the form of a key
escrow service as otherwise permanent failure (say disaster-
induced) of trusted servers or otherwise loss of the encryp-
tion key can result in permanent data unavailability. More
importantly, they poorly meet the seamless failover design
goal as in the absence of any trusted server, untrusted servers
need to be able to make progress with encrypted copies of
state. Supporting general state machine services in this mode
necessitates fully homomorphic encryption (FHE), but the set
of applications for which FHE techniques are low-overhead
enough to be practical today is rather limited.

In comparison to FHE, advances in secure multiparty com-
putation (SMPC) in recent years show significant speedup [15]
and have rapidly expanded the class of computations that
can be performed with overheads low enough to be usable in
practice, e.g., systems such as SECRECY [38], Obscure [19],
Senate [49], Conclave [66], and others have expanded the
scope of computation from simple operations like boolean
and arithmetic operations to richer functions like those in
typical database query languages (such as select, count,
limit, join, etc.) as well as to optimize the query processing
plan for sophisticated database queries all while maintaining
privacy of the underlying state from untrusted servers.

However, the privacy afforded by both SMPC- as well as
FHE-based approaches have a critical fundamental limitation,
namely they do not afford request privacy, only state privacy,
in a state machine. In either approach, the function being
computed (locally in FHE and distributed with interactive
rounds in SMPC) is by design public to the untrusted servers.
Furthermore, SMPC in general also exposes the result of
the computation (although for specific functions, it may be
possible to orchestrate the computation so that individual
untrusted servers only produce secret shares of the result
that can be re-assembled by a trusted end-client). Although
state-of-the-art SMPC techniques internally employ secret
sharing, they also do not provide information-theoretic pri-
vacy, rather they enable ideal-world/real-world privacy [15]
that guarantees that untrusted servers don’t learn anything
more about client data compared to what they would have
learned by submitting the request to a trusted server and
obtaining the result of the computation from it.

In keeping with its stated design goals, the overhead limi-
tations of general private computation techniques, and the
availability of trusted servers in the common case in many
real-world scenarios, OPaxos adopts a pragmatic approach
that, in the common case of trusted server availability, en-
ables information-theoretic privacy (including request pri-
vacy) with overhead comparable to traditional consensus-
based fault-tolerance. When no trusted servers are available,
OPaxos continues to provide information-theoretic privacy
for a class of services referred to as client-partitioned state
machines (detailed in §5.1). For general state machines under
no trusted server availability, OPaxos’ secret-sharing based
approach enables it to seamlessly fall back on SMPC-based
alternatives and their (weaker) ideal-world privacy guaran-
tee and overhead limitations. Our position is that this design
pushes the envelope closest to the OPaxos’ targeted design
goals. The next section explains this design.

3.2 OPaxos/PBSSM High-level Design
OPaxos adopts a primary-backup secret-shared state machine
(PBSSM) design wherein the trusted subset of servers (pos-
sibly singular) store application state in plaintext and un-
trusted backup servers store corresponding secret shares.
Under graceful conditions when at least one trusted server
is available, a trusted server is designated as the consensus
leader (or primary) with the following key differences from
a traditional RSM design in that: 1) the primary first exe-
cutes the (tentative) next client request before agreement
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Figure 2: PBSSM execution in the default trusted mode.

over its order; and 2) the primary uses the state diffs or secret
shares thereof resulting from the execution as its proposal
for agreement over the next slot number; 3) upon agreement
termination, untrusted backups apply secret shares of the
agreed upon state diffs while trusted backup servers apply
plaintext diffs to their copy of the state, and the primary
replies back to the request-issuing client. Figure 2 illustrates
this high-level PBSSM design.
A few remarks are in order for the choice of the above

design, why it works, and its tradeoffs. The primary-backup
design is well aligned with our threat model and assump-
tion of common-case trusted server availability. Unlike a
traditional RSM, untrusted OPaxos servers only store secret
shares of application state and therefore cannot directly exe-
cute requests to compute state transformations locally, how-
ever trusted servers with plaintext state can simply execute
requests and compute and transmit state diffs to the backups,
so OPaxos’ leader election accordingly prioritizes trusted
servers, if any are available, over untrusted ones. A primary-
backup approach also has the desirable dual side-effects of
reducing the replication cost of execution and making the
state machine deterministic as only a single trusted primary
executes a request; all non-primaries, including trusted ones,
apply state diffs transmitted by that primary. The justifi-
cation for performing execution before agreement is more
subtle and has to do with ensuring state convergence safety
with non-deterministic state machines (as detailed in §5.2).

OPaxos’ design enables it to seamlessly fail over from a
primary-backup to a decentralized secret-shared state ma-
chine with untrusted backups alone when no trusted server
is available. This mode of execution, referred to as the un-
trusted mode, for general state machines relies on secure
multiparty computation, but simple applications such as key-
value stores can make do with a trusted client dealer without
SMPC techniques. The SMPC mode fundamentally entails
the necessary limitations of requiring state machine deter-
minism as well as lack of request privacy, neither of which
limits either of the (trusted) PBSSM mode or client-dealer-
driven untrusted modes. We describe the untrusted mode

Figure 3: OPaxos’ proposers and acceptors placement
in the trusted and untrusted servers. Some acceptors
are placed in trusted server.

operation inmore detail in §5.1 and summarize the high-level
operational modes in Table 1.

4 OPAXOS CONSENSUS PROTOCOL
We describe the roles, event-action protocol, quorum con-
straints, and formal proofs of OPaxos’ consensus protocol.

4.1 Overview
As in Paxos, OPaxos has three actors: proposers, acceptors,
and learners. A proposer proposes a secret-shared value to the
acceptors, all the acceptors try to agree on the value based on
their respective secret-shares, and the learners are eventually
informed of the shares of the agreed upon secret value. For
simplicity, we combine the learner and acceptor roles and
just refer to them as acceptor. Since proposers perform secret-
sharing, they are placed in the trusted servers allowed to
know the secret value as illustrated in Figure 3. Acceptors
may be placed on either trusted or untrusted servers, but
untrusted acceptors must not know the secret value.
OPaxos uses (𝑡, 𝑛) threshold secret-sharing wherein the

proposer transforms a secret value into 𝑛 secret-shares dis-
tributed to all the 𝑛 acceptors with at least 𝑡 shares required
to reconstruct the secret, therebymaking it resistant to (𝑡−1)-
collusion. A key technical challenge is to integrate threshold
secret-sharing into a quorum-based consensus protocol.

Why Challenging. To appreciate the challenge, consider
a strawman protocol where a proposer simply issues secret
shares of the proposed value instead of the proposed value
itself in a protocol otherwise identical to Paxos. This protocol
has at least two problems. The first problem is the recovery
of values that may have already been decided in lower round.
In Paxos, if a proposer as part of the promise messages in
the first phase receives even a single accepted value in a
lower round, it loses the flexibility to propose an arbitrary
value, however in the strawman protocol, the proposer may
only retrieve a single secret share in the first phase, which is
insufficient to reconstruct any lower ballot value. The second
problem is Paxos safety’s reliance on proposers being truthful
thereby preventing them from proposing different values in
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Variable Name Description
Acceptor

bmax The highest ballot-number this acceptor has seen.

bacc
The ballot number in which this acceptor
accepts the secret-share.

bori
The original-ballot; the first ballot number used
to propose the accepted secret-share.
Used as the secret value’s identifier.

ssval The accepted secret-share.
committed A flag indicating whether ssval is committed or not

Proposer
bcur The current ballot number for this proposer.

Table 2: Variables in OPaxos’ acceptors and proposers.

the same round, so proposing different secret shares violates
that literal assumption, and furthermore, a proposer in this
strawman protocol has no way to know if two secret shares
received from two different acceptors were generated from
the same secret value because the secret shares by design
reveal no information about the original secret.
To address the first problem, OPaxos adapts the quorum

constraint to ensure 𝑡 acceptors intersection (not just nonzero
intersection). To address the second problem of attaching
additional information with a secret share that allows a node
to determine if two shares came from the same secret with-
out revealing any additional information about the secret,
OPaxos relies on the original ballot or the ballot in which a
secret share was first proposed. We explain these and other
subtle adaptations including precise pseudocode next.

4.2 Consensus Protocol Phases
OPaxos, like Paxos, has two safety-critical phases initiated
by a proposer in some round designated to it: prepare and
propose 2. In the prepare phase, a proposer seeks to acquire
promises from some |Q1| quorum of acceptors not to accept
any value in any lower round and retrieve secret shares if any
that they accepted in their respective highest lower round.
In the propose phase, the proposer seeks to acquire a |Q2|
quorum of acceptances from acceptors for shares of the value
if any retrieved from the lower round acceptances reported in
the promise messages in the prepare phase, else for shares of
an arbitrary value. A value is decided if a proposer acquires
the designated quorums in both phases in the same round,
otherwise it may retry with a higher round designated to it.
A round, also known as ballot number, is represented

as a two-tuple consisting of a counter and the identity of
the proposing server. Ballots define a totally ordered space
wherein a ballot 𝑏1 is greater than ballot 𝑏2 if 𝑏1’s counter is
greater than 𝑏2’s counter or if both counters are equal and
𝑏1’s identity is lexicographically “greater" than that of 𝑏2.

Phase 1: Prepare-Promise. In the prepare phase (Phase-1)
of OPaxos shown in Figure 4, a proposer sends a PREPARE(bcur)
2Some descriptions of Paxos refer to the propose phase as the accept phase

Phase-1 in OPaxos
Proposer 𝑃 on receiving value 𝑠 from client:
1: bcur←− bcur + 1 // increase the counter
2: SendPREPARE(bcur) to all𝑛 acceptors. // broadcast then proceed
3: {[𝑠1 ], [𝑠2 ], ..., [𝑠𝑛 ]}←− SecretShare(𝑠) // do this while waiting

Acceptor 𝐴 upon receiving PREPARE(𝑏) message from Proposer 𝑃 :
4: If 𝑏 < bmax, return. // ignore the message
5: bmax←− 𝑏.

// bacc, bori, and ssval can be empty
// if this acceptor has not accepted any secret-share.

6: Send PROMISE(bmax, bacc, ⟨bori, ssval⟩) to P.

Figure 4: Phase-1: acceptors sending promises.

message to acceptors where bcur is its current ballot num-
ber. While the proposer waits for promises from acceptors,
it can in parallel generate the secret-shares of value 𝑠 that
it wishes to propose. In all pseudocode, we use [𝑠𝑖 ] (with
square brackets) to denote the 𝑖-th secret-share of 𝑠 .

An acceptor maintains a total of three ballot numbers: (1)
bmax, the highest ballot it has seen; (2) bacc, also referred to
as the accepted ballot that is highest ballot in which it has
accepted some value; (3) bori, also known as the original
ballot that is ballot of the proposer that originally proposed
the value (re-)proposed and accepted with ballot bacc. Tradi-
tional Paxos only maintains two ballot numbers at acceptors
that are analogous to bmax and bacc, but OPaxos relies on
bori as a connecting identifier of the secret shares of the
same secret value without revealing any secret information.

Phase 2a: Recovery and Propose. The proposer waits
to receive |Q1| PROMISE messages from acceptors in re-
sponse to its PREPARE message. As in Paxos, if none of the
PROMISEs report any secret shares accepted with a lower
accepted ballot (bacc), the proposer is free to propose any
value. However, if the PROMISEs did report shares accepted
in lower ballots, the value recovery process is different, as
shown in Figure 5, and described next.
From the |Q1| promises, the proposer needs to find a

promise with the highest accepted ballot, denoted as 𝑆 . The
proposer then tries to find 𝑡 promises, including 𝑆 , whose
original-ballot is the same as the original-ballot in 𝑆 . If 𝑡
such shares exist (line 7), the proposer needs to re-generate
more shares from those 𝑡 shares (line 7a) and reuse bo as the
original ballot (line 7c). Else, the proposer is free to propose
any value (line 8a) with the original ballot bori set to its
own ballot bcur (line 8b).

Phase 2b: Accept. Upon receiving a proposal, if the pro-
poser’s ballot number is less than the highest ballot bmax
the acceptor has seen so far, then the proposal is ignored
(line 10), otherwise the acceptor accepts the proposal, and
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Phase-2a in OPaxos
Proposer 𝑃 after receiving PROMISE(𝑏, ba, ⟨bo, [𝑦 ] ⟩) messages from
at least |Q1 | acceptors with 𝑏 = bcur:
Let 𝑅 be the set containing all the promises received by 𝑃 .
Let 𝑆 be a promise with the highest accepted ballot ba in 𝑅.
Let𝐺 be a set of at least 𝑡 promises whose original-ballot bo

is equal to 𝑆 ’s original-ballot: S.bo.
//𝐺 ←− {(ba, ⟨bo, [𝑠′1 ] ⟩),
// (ba1, ⟨bo, [𝑠′2 ] ⟩),
// (ba2, ⟨bo, [𝑠′3 ] ⟩), ...}

7: If𝐺 exist:
a. {[𝑠′1 ], [𝑠′2 ], ..., [𝑠′𝑛 ]}←− GenMissShare([𝑠′1 ], [𝑠′2 ], ..., [𝑠′𝑡 ])
b. SS←− {[𝑠′1 ], [𝑠′2 ], [𝑠′3 ], ..., [𝑠′𝑛 ]}
c. bori←− S.bo

8: Else:
a. SS←− {[𝑠1 ], [𝑠2 ], [𝑠3 ], ..., [𝑠𝑛 ]} // from line 3
b. bori←− bcur

9: Send proposals containing secret-shares SS and
original-ballot bori. For each [𝑠𝑖 ] in SS:
a. Send PROPOSE(bcur,⟨ bori, [𝑠𝑖 ] ⟩)

to the 𝑖-th acceptor.

Figure 5: Phase-2a in OPaxos: proposer recovers and
re-proposes the previously accepted secret value 𝑠′ or
proposes any secret value 𝑠 sent by a client (in Phase-1).

Phase-2b and Commit in OPaxos
Acceptor 𝐴𝑖 upon receiving PROPOSE(𝑏, ⟨bo, [𝑠𝑖 ] ⟩) message from
a proposer 𝑃 .
10: If 𝑏 < bmax, return. // ignore the message
11: bmax←− 𝑏

12: bacc←− 𝑏

13: bori←− bo

14: ssval←− [𝑠𝑖 ]
15: Send ACCEPT(bacc) to proposer 𝑃

Proposer 𝑃 after receiving ACCEPT(𝑏) messages from at least |Q2 |
acceptors with 𝑏 = bcur:
16: Respond to the client.
17: For each [𝑥𝑖 ] in SS: // SS and bori are

a. Send COMMIT(bcur,⟨ bori, [𝑠𝑖 ] ⟩) // from line 9
to the 𝑖-th acceptor 𝐴𝑖 .

Figure 6: Phase-2b in OPaxos: proposer learns whether
proposed secret-shares are accepted by a Q2 quorum.

updates the highest ballot bmax, the accepted ballot bacc, the
original ballot bori, and the secret-share ssval in durable
storage (line 11-14).

Commit Phase. If the proposer receives |Q2| ACCEPT re-
sponses from acceptors for its proposed shares, it consid-
ers the corresponding secret value as decided and issues a
COMMIT message to that effect to all acceptors (line 17).

4.3 Quorum Constraints
Unlike Paxos that can use simple majority quorums or any
quorum sizes |Q1| and |Q2| respectively for the two phases
that ensure a nonempty intersection, OPaxos with (𝑡, 𝑛)
threshold secret-sharing requires the two quorums to in-
tersect in at least 𝑡 acceptors:

|Q1 ∩ Q2| ≥ 𝑡 (1)

A conservative quorum configuration used in OPaxos to
satisfy that requirement is |Q1| = |Q2| = ⌈𝑛+𝑡2 ⌉. For example,
if we have 4 acceptors with a (2,4) threshold secret-sharing
scheme, the quorum size is 3 (incidentally same as majority
quorums in Paxos with 4 acceptors), a configuration that can
handle one failed acceptor. Figure 7 shows several possible
configurations of acceptors in OPaxos compared to Paxos.

OPaxos enables flexible quorum sizes [24] satisfying the 𝑡-
intersection constraint that trade off availability for common-
case performance, e.g., by making Q2 smaller and Q1 bigger,
we get higher capacity and slightly lower request latency un-
der graceful conditions, however availability is still limited
by the Q1 quorum. Our implementation defaults to the ceil-
ing/floor quorums in (2) and (3) below very slightly favoring
common-case performance without hurting fault tolerance.

|Q1| =
⌈𝑛 + 𝑡

2

⌉
(2) |Q2| =

⌊𝑛 + 𝑡
2

⌋
(3)

4.4 Safety, Liveness, and State Integrity
The safety and liveness properties ensured by OPaxos are
identical to those of Paxos with generalized quorums (as
opposed to simple majority quorums), as outlined below.

Theorem (Agreement and Validity Safety). OPaxos en-
sures that at most a single value that some proposer has pro-
posed is chosen as the decision (i.e., committed in line 17.a of
Phase-2b in Figure 6).

The formal proof of this theorem is deferred to our techni-
cal report [31]. Here we outline key differences in the proof
of safety compared to Paxos. Recall that Paxos’ agreement
safety relies on a crucial invariant, namely, a proposer can
propose a value 𝑣 with ballot 𝑛 iff there exists a Q1 quorum
of acceptors such that either (1) no acceptor in that quorum
has accepted any proposal with ballot less than 𝑛; or (2) 𝑣 is
the value of the proposal with the highest ballot less than
𝑛 accepted by any acceptor in that quorum. Let us call a
value-ballot two-tuple (𝑣, 𝑘) as proposable if it satisfies either
part of that disjunctive condition in the invariant.

OPaxos generalizes the definition of proposable(𝑣 ,𝑘) so as
to preserve a similar-in-spirit invariant crucial to proving
agreement safety, and depends on (in general) distinct values
of original ballot and accepted ballot for a proposal as well
as the secret sharing threshold:
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Figure 7: Example configuration of acceptor quorum set Q1 and Q2 in Paxos and OPaxos. Left: simple majority
quorum, |Q1| = |Q2| = ⌈𝑛+12 ⌉; Middle: majority quorum with 𝑡-intersection, |Q1| = |Q2| = ⌈𝑛+𝑡2 ⌉; Right: flexible
quorum with 𝑡-intersection, also grid quorum.
Definition (proposable). proposable(𝑣 ,𝑘) is defined as true
iff there exists a Q1 quorum of acceptors such that either

i) at least 𝑡 acceptors in that quorum accepted shares
of 𝑣 with the same original ballot in their respective
highest accepted ballots less than 𝑘 , and one of those
𝑡 acceptors has the highest accepted ballot less than 𝑘
across all acceptors in that quorum; or

ii) less than 𝑡 acceptors in that quorum have accepted
value shares with the same accepted ballot as the high-
est accepted ballot less than 𝑘 across all acceptors in
that quorum.

The formal proof shows that if a value 𝑣 has been decided
in some ballot 𝑘 , proposable(𝑥 , 𝑗 ) is false for any 𝑥 ≠ 𝑣 and
𝑗 > 𝑘 , which combined with the invariant helps complete the
proof. The proof relies on the 𝑡-intersection property of the
Q1 and Q2 quorums in order to ensure that a decided value
will always be reconstructable by a new ballot coordinator.

In our technical report [31], we also formally describe
the OPaxos-driven PBSSM protocol and prove that it pre-
serves primary integrity, a critical property needed to prevent
state corruption or divergence despite leader changes in any
primary-backup replication system [27].

Liveness. OPaxos preserves Paxos’ liveness property ensur-
ing progress when at least max( |Q1|, |Q2|) acceptors are up
and can communicate in a timely manner. Termination can
not be guaranteed because of the FLP impossibility result,
but the protocol will terminate when a single coordinator re-
mains uncontested and long-lived enough to complete both
phases of the protocol in the same round. Furthermore, be-
cause the threshold 𝑡 ≤ min( |Q1|, |Q2|), a decided value will
always be reconstructable during periods of liveness.

4.5 Fast Oblivious Paxos
We have additionally developed Fast Oblivious Paxos (Fast-
OPaxos), which similar in spirit to Fast Paxos [36] is an

optimization that reduces end-to-end delay and also places
less work on the bottleneck server, thereby also making it
well suited to leaderless Paxos extensions [35, 45]. A detailed
description of the threshold-based quorum constraints and
formal proofs of safety and liveness are available in our
technical report [31].

5 OPERATIONAL ODDS AND ENDS
5.1 Untrusted Mode Operation
The description thus far assumed that at least one trusted
server is available to act as the PBSSM primary. We next
describe the operation of an OPaxos-based system when
no trusted server is available, and further separate it into
two application sub-categories: 1) general state machines;
2) client-partitioned state machines, explained in turn be-
low. The former can support arbitrary services but entails
more overhead while the latter is more suitable for services
whose underlying state is logically partitioned into small
units mapped to corresponding end-clients that manage that
state, for example, a key-value store wherein each key (or
bag of keys) is mapped to a client that owns and manages the
key-value pair(s). In both untrusted mode categories, trusted
clients are assumed to perform secret-sharing.

General. Supporting general statemachine services inOPaxos’
untrusted mode requires secure multiparty computation. Un-
like the PBSSM mode wherein a trusted server plays three
roles: primary, consensus leader, and secret dealer, in the un-
trusted mode, a client plays the role of the secret dealer
and an untrusted server acts as the consensus leader, and
there is no primary as untrusted servers operate as a decen-
tralized secret-shared state machine. Being based on SMPC,
this mode fundamentally cannot support request privacy, i.e.,
untrusted nodes can and need to see the contents of client
requests in plaintext in order to execute the request in a dis-
tributed manner, however the underlying application state
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Figure 8: CPSSM: Execution in the client-partitioned
secret-shared state machine.

is still secret-shared and therefore remains private from the
untrusted servers as per the ideal-world/real-world model
that in general is weaker than information-theoretic privacy.
Specifically, SMPC in general only guarantees that untrusted
servers learn no more information than they would by ob-
serving the input requests and the result of executing the
requests, whereas information-theoretic privacy in OPaxos’
PBSSM mode guarantees that untrusted servers can obtain
no information by observing secret-shared requests as well
as underlying application state.

Client-Partitioned. Supporting client-partitioned state ma-
chine services is much simpler, lower overhead, and enables
information-theoretic privacy even in the untrusted mode
as follows. To “execute” a request, a client dealer fetches
the state partition it manages, e.g., a key-value pair, locally
computes the result and re-distributes secret shares of any
state modifications back to the untrusted servers (shown in
Figure 8). It is straightforward to ensure request privacy by
performing both read and write operations in a manner so as
to appear identical, e.g., by always updating a nonce in the
key-value pair even for reads to make them indistinguishable
from writes. Furthermore, it is straightforward to hide the
access pattern by using Oblivious RAM [18] techniques at
the application level with a commensurate overhead cost.

5.2 Why Execution Before Agreement
In the trusted PBSSM mode, conducting execution before
agreement or the other way round does not make a signif-
icant difference to overall request latency as either option
allows the primary (a backup) to complete request handling
in two (three) one-way network delays, however OPaxos’ de-
sign choice prevents the possibility of state divergence when
a trusted primary fails and another trusted server takes over
as the consensus leader and request executing primary. The
traditional sequence of agreement followed by execution de-
couples an already decided request from its underlying state
transformation, which allows a new primary to issue state
diffs different from those already applied by one or more

backups and issued by the previous primary, so preventing
state divergence because of nondeterministic request execu-
tion would require backups to support an undo operation
to roll back and re-apply state diffs and for the protocol to
guarantee detection of such potential divergence.
In contrast, with execution before agreement, undos are

unnecessary for correctness at backups. A primary that
crashes and recovers can simply roll forward from the most
recent checkpoint only up until the highest cumulatively
agreed upon slot number and follow the new primary’s lead
on subsequent state diffs. In the rare event of a new primary
taking over after mistakenly suspecting the old primary as
having failed (say because of asynchrony), a rollback at the
old primary may still be necessary in which case OPaxos
simply rolls forward the old primary from the most recent
checkpoint (effectively emulating a crash), however the like-
lihood of such false positives can be engineered to be low
with long-lived primaries and does not require additional
protocol mechanisms to guarantee state convergence safety.
In the untrusted mode, a corner case with client-driven

execution is when only a subset of servers have received se-
cret shares of the updated state and the orchestrating client
dealer fails midway. Fortunately, as with the PBSSM mode,
performing execution before agreement can alleviate this
scenario as follows: for each request, a client first collects
a threshold number of secret shares from a Q1 quorum of
backups for its partition, verifies that they have the same
version number, locally executes the request, and then pro-
poses secret shares of the corresponding updated partition
as the next proposal whose order needs to be agreed upon by
the untrusted servers. Successful agreement automatically
ensures availability of a threshold number of secret shares
of the updated partition whenever a majority is available (as
a majority outnumbers the OPaxos’ threshold by design).

6 IMPLEMENTATION CONSIDERATIONS
In this section, we describe several implementation consid-
erations applicable to OPaxos as well as Fast-OPaxos.

Tracking state diffs in trusted mode. Our prototype im-
plementation of PBSSM uses Linux’s strace [39] to capture
state diffs while executing each command, enabling us to sup-
port general state machines with modest overhead. For each
executed command, PBSSM persistently modifies the state
in the file system using file IO system calls (e.g write and
pwrite). Thus, we can capture any file changes, secret-share
them, and broadcast them to the backups before sending the
execution results to the user. Simpler applications like key-
value stores can directly implement OPaxos secret-sharing
at the application layer without the overhead of strace.
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(a) Secret-sharing and encryption latency (b) Latency on LAN (c) Latency on WAN

Figure 9: a) Microbenchmark for secret-sharing and encryption latency; b) Latency overhead of secret-sharing is
negligible for small secret values, for larger values SSMS reduces the latency. c) The wide-area latency dominates,
making the overhead of secret-sharing small.
Preventing duplicate shares. Because proposers indepen-
dently reconstruct the Shamir polynomial and all 𝑛 shares
using just 𝑡 shares, it is possible for two different acceptors to
end up receiving duplicate shares unless all trusted proposers
have an a priori agreed upon deterministic way to permute
shares across acceptors. Simplistic schemes like assigning
the first (lowest 𝑥 ) share to the first acceptor or other simple
mapping functions can reveal some information about the
underlying polynomial, so the best practice is for trusted
proposers to use an a priori known function to generate a
random permutation of shares to assign to acceptors.

Faster randomization source. We learned from our im-
plementation and prototype evaluation experience that the
randomization used to generate secret-shares of a value
can induce a significant overhead, which is consistent with
prior work [58] in other secure systems contexts. In OPaxos,
we use multiple workers for the secret-sharing process in
different CPU cores, but in Linux, all those workers share
the same random generator /dev/urandom which becomes
the bottleneck. After observing this issue, we reverted to a
cryptographically secure pseudorandom number generator
(CSPRNG) based on the AES counter mode for which mod-
ern CPUs widely provide hardware support, e.g., AES-NI
for cryptographic computation, that greatly increases the
throughput of secret generation. We extended the open-
source Shamir implementation of Hashicorp Vault [22] by us-
ing CSPRNG as the random source, leveraging SIMD for Ga-
lois arithmetic operation, and with more cache-friendly poly-
nomial generation. Our open-source implementation [29],
therefore does secret-sharing faster than the original.

Smaller secret-share size. OPaxosworkswith any threshold-
secret sharing schemes, including SSMS [28] that enables
secret-shares’ size reduction. SSMS uses erasure-coding that
reduces the shares’ size by 1/𝑡 without revealing the value,
even in a partial form. We use an open-source reed-solomon
library [52] written in Go for implementing SSMS. This SSMS

optimization is critical to improve the latency and capacity
performance for large client request sizes.

Other optimizations. We note a few other optimizations
thoughwe have not implemented these. First, we can use grid
quorums in OPaxos where the first quorum Q1 is strictly in
the form of columns and the second quorumQ2 is in the form
of rows, thereby further reducing the size of each quorum but
at the cost of availability, as exemplified in Figure 7 (right),
where with a total of 8 acceptors and 𝑡 = 2, we only need 4
acceptors in both quorums; two columns for Q1 and one row
for Q2. However, if say acceptors that store [𝑥3] and [𝑥5]
fail simultaneously, the protocol cannot make progress as
we cannot have a complete row for the first phase. Second,
in some runs, we can have a smaller Q1, for example, when
all the incoming promises are empty. Specifically, in Phase-
1, when the proposer gets ( |Q1| − 𝑡 + 1) empty promises,
the proposer can directly start Phase-2. When that happens,
waiting for the remaining (𝑡−1) promises will not change the
fact that there is no recoverable value. This optimization is
similar to that in PANDO [63] and can further be generalized
in OPaxos, as described in our technical report.
7 EVALUATION
Our prototype for OPaxos is implemented on top of Paxi [2],
an open-source research framework for evaluating consen-
sus protocols. We wrote the protocols using Go in around
9300 LoC, and it can be accessed at [30].
In this section, we evaluate the overhead of providing

the privacy-preserving property in OPaxos (§7.1, §7.2), com-
pared to Paxos; show how our OPaxos implementation han-
dles node failures (§7.3); and demonstrate the latency for an
emulated PBSSM (§7.4). Finally, we emulate a simple key-
value store deployed across different cloud providers with
no trusted server (§7.5).
The implemented prototype of Paxos and OPaxos do the

typical consensus over a log of requests or state diffs (multi-
decree).We call thesemulti-decree consensus asMulti-OPaxos
and Multi-Paxos, but in this report we also refer them as
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OPaxos and Paxos for brevity. We use two secret-sharing
schemes for OPaxos: Shamir and SSMS, and compare them
with ordinary Paxos also encrypted Paxos where the value
is encrypted before being proposed.
Default evaluation setup. We evaluate OPaxos with five
m510 machines in the CloudLab cluster [10]. Each node has
2.0 Ghz Intel Xeon CPUs, 64GB RAM, and is interconnected
via 1 Gbps network links. The clients run on a separate
machine, and by default use 50 bytes values. TCP is used for
client-leader communication as well as among the consensus
instances. We use two trusted servers, 𝑡 = 2, and the majority
with 𝑡-intersection to determine the quorum sizes: for 𝑛 = 5
and 𝑡 = 2 the quorum sizes are |Q1| = 4 and |Q2| = 3. Beside
this default setup, in some experiments, we vary the value
sizes, emulate state-machine computation with a standard
workload, and emulate WAN latency using Linux’s tc.

7.1 Latency Overhead in OPaxos
We measured the latency overhead under low load, i.e., with
a single outstanding request at any time. The latency is mea-
sured from the client side as the time since the client sent
the request until it receives the response. For each protocol,
a single client sends 100K requests to the leader. We plot the
average latency with error bars showing standard deviation.

Secret-sharing and encryption microbenchmark. We
first measure the latency of threshold secret-sharing schemes
we use (Shamir [56] & SSMS [28]), and also the latency of
standard encryption of RSA & AES. Using one of the ma-
chine as described in the evaluation setup, we measured the
latency for (5,2) threshold secret-sharing: the time needed
for generating 𝑛 = 5 shares with 𝑡 = 2, and the latency of the
RSA & AES library in Go. As shown in Figure 9a, symmetric
encryption such as AES has the lowest latency, followed by
Shamir and SSMS. The latency of asymmetric encryption as
RSA is too high for consensus usage, so we only consider
AES for encrypted Paxos. We can see that with up to 44KB
secret value, the secret-sharing and encryption latency is
still below 1ms. For small secret values, the secret-sharing
latency for Shamir is lower than SSMS. This trend will come
in handy when we later measure OPaxos’ latency overhead.

End-to-end latency overhead. With a stable OPaxos leader,
every received value from the clients needs to be secret-
shared, which induces additional latency compared to Paxos.
However, as shown in the secret-sharing microbenchmark,
for small secret value we expect the latency overhead to be
small. The result is shown in Figure 9b wherein for small
values up to 1KB, the secret-sharing latency overhead is
less than 0.1ms. In real multi-cloud deployment, that latency
overhead is negligible as the inter-node latency will typically
be much higher, as we also show next.

Figure 10: Secret-sharing overhead reduces the capacity
of OPaxos compared to Paxos, as measured with 50
bytes values.

Consistent with the microbenchmark in Figure 9a, we
also see that with larger values the latency overhead in
OPaxos also increases. For OPaxos with SSMS, the benefit of
secret-shares’ size reduction can be seen in the measurement
with large values (10-100KB). With those large values, using
Shamir is slower than SSMS; this is also consistent with the
result in Figure 9a. The smaller overhead of using SSMS with
large values is the result of both faster secret-sharing and
less data transmission from the leader to acceptors. With 50-
100KB values we can even see that OPaxos with SSMS offers
lower or similar latency than the non-encrypted Paxos.

Latency on wide area network. The smaller overhead
of using secret-sharing in OPaxos becomes more apparent
when we run the measurement in a WAN measurement. We
emulate WAN deployment by having 5ms RTT in the client-
leader link and 10ms RTT in the inter-node networks. As
shown in Figure 9c, the wide area latency dominates, making
the overhead of secret-sharing negligible.

In our technical report [31], we also analyze the impact of
quorum sizes and show reduction in average latency with
smaller Q2 quorum sizes (and thus larger Q1 quorums).

7.2 Capacity Overhead
In this evaluation, we measure the capacity overhead of
OPaxos compared to Paxos. The secret-sharing process adds
more work for OPaxos, thus OPaxos is expected to provide
lower capacity than Paxos. We estimate the capacity of the
system as the load when the difference between response-
rate and the load grows more than 1%, wherein load is the
rate of 50 bytes requests sent by the clients to the leader, and
response-rate is the rate of responses received by the clients.
We use 10 parallel clients to overload the system. We vary
the load in Paxos and OPaxos, and for each load the clients
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Figure 11: Failures of some untrusted servers.
send the requests for 30 seconds with inter-request times
that are Poisson- distributed. We additionally also record the
average latency for every load.
Figure 10 shows the load-latency measurement with the

default evaluation setup. When the load is near the system
capacity, we can see the response rate flattening and the
latency going up drastically. In our measurement, Paxos’
capacity is around 57.7K req/s; encrypted Paxos capacity
is around 54.7K req/s; while the capacity of OPaxos using
Shamir and SSMS are 52.5K req/s and 51.0K req/s respec-
tively; making OPaxos’ capacity with Shamir and SSMS to
be 91.3% and 86.9% of Paxos’ capacity. These results are close
to our expectation. Measured with the same setup in a sin-
gle machine, we observed the secret-sharing throughput of
Shamir and SSMS are around 683.5 K req/s and 536.3 K req/s,
respectively; thus, we expect our implemented OPaxos to
offer more than 85% of Paxos’ capacity. We also show when
OPaxos with SSMS can offer higher capacity compared to
Paxos in our technical report [31].

7.3 Performance Under Server Failures
Next, we show that our implementation of OPaxos is able to
handle some node failures while making progress. However,
compared to Paxos, the 𝑡-intersection requirement in OPaxos
reduces the availability. Using the default setup with 𝑛 =

5, 𝑡 = 2, |Q1| = 4, and |Q2| = 3, we emulated node failures by
dropping all incoming messages to some nodes.
We make the client continuously send requests to the

leader with a constant load of 10,000 reqs/s, while we capture
the throughput for every 100ms from the client. As shown in
the Figure 11, with 𝑛 = 5 nodes and 𝑡 = 2, OPaxos can handle
two failed untrusted nodes under a stable leader. However,
the remaining three untrusted nodes after the 40s mark are
not enough for leader election (Phase-1) as 𝑓 = 1.

7.4 PBSSM Primary-Backup Computation
We try to run an arbitrary application in a primary-backup
fashion using OPaxos and Paxos. We employ a primary that
execute a TPC-C workload [61]. For each transaction the
primary executes the queries on an sqlite database while
capturing the state diffs. Then, the primary run consensus
over the state diffs. With OPaxos, the primary secret-share
the state diffs while in the encrypted Paxos, the primary

Figure 12: OPaxos and Paxos under TPCCWorkload

Figure 13: Key-Value Store without trusted leader. Left:
emulated WAN setup. Right: client-perceived latency.

encrypts the state diffs. The result is shown in Figure 12.
The latency depends on the transaction type, in general we
can see that OPaxos with Shamir imposes latency overhead
while OPaxos with SSMS can offers lower latency. This result
is consistent with our previous latency measurements.

7.5 Key-Value Store On Untrusted Mode
We also run a simple key-value store (KVS) with no trusted
nodes available. The KVS is deployed in an emulated multi
cloud providers as shown in the left of Figure 13. The client
acts as secret-sharing dealer and directly broadcast the secret
shares to all the nodes. One of the untrusted node acts as a
leader to assign slot number to the client’s proposed secret
value. In the encrypted Paxos, the client only needs to send
the encrypted value to the leader, not to all the nodes. As
in previous measurement, we record the perceived latency
from the client side under low load. The result in Figure 13
shows that the latency overhead of OPaxos is negligible.

8 SMART-HOME SYSTEM CASE STUDY
In this section, we describe a case study evaluation of OPaxos’
usability in smart-home systems.

8.1 Current Smart-home System Issues
The prevailing architecture for smart-home systems today
suffers from two key drawbacks: lack of privacy and lack of
strong consistency guarantees, addressing which forms a key
motivation for OPaxos. Privacy is a concerning issue because
smart-home systems store sensitive personal data on third-
party clouds making them vulnerable to breaches, as has
also been observed by many prior works [4, 44, 53, 60]. To



Oblivious Paxos: Privacy-Preserving Consensus Over Secret-Shares SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

(a) Smart-home system setup (b) Smart-home latency
Figure 14: Smart-home system setup and the ping laten-
cies, also client perceived latencies using smart-home
actions dataset.
address this privacy concern, local-first smart-home systems
are being developed, for example Home-Assistant [23] and
Hubitat [26] that prioritize local execution in the hub, even
for features that traditionally rely on the cloud such as voice
recognition [54]. However, they trade fault-tolerance for
privacy by storing all the data locally in the hub making the
data irrecoverable if the local storage is damaged.

Strong consistency is important because smart-home sys-
tems physically interact with users and physical systems
thereby impacting their safety. For example, when there are
concurrent updates to lock/unlock a smart-lock, or concur-
rent updates to routines managing surveillance devices, all
of the backups must reflect the most recent configuration up-
date and device state as any inconsistency could compromise
physical safety. Melissaris et al. [43] shows this consistency
issue in popular hubs like SmartThings and Vera where the
events to unlock/lock a door can be reordered at multiple loca-
tions: the wireless protocol, the multi-threaded smart-home
application, and in the storage layer, resulting in the door
being erroneously left in a state that the user does not expect.
The problem becomes more concerning when we have mul-
tiple backups that need to be synchronized. Saeida et al. [3]
also highlights the importance of fault-tolerant event order-
ing in smart-home systems for safety.

We envision anOPaxos-based smart-home systemwherein
trusted home hubs/servers act as proposers and untrusted
server across cloud providers act as backups, thereby ensur-
ing strong consistency, high availability, and privacy.

8.2 Real World Workload Measurement
As a case study, we measure how OPaxos and Fast-OPaxos
might perform, in terms of latency, in a real multi-cloud
deployment under real smart-home systems access pattern.
We instantiated virtual machine on AWS, GCP, Azure, and
IBM Cloud, then measured the ping latency. We use the ping

measurement results to simulate the system in our prototype
by injecting delay when some nodes send messages to others;
see Figure 14a for the smart-home system setup. The system
has two types of clients: in-house and remote client. The
in-house client resides in the house near the trusted node:
the local smarthub, and the remote client is far from the
house. The untrusted nodes that act as acceptors, for backup
purposes, reside in different cloud providers.
We used the Mon(IoT)r [53] and PingPong [62] smart-

home datasets that contain timestamped packet-captured
files corresponding to actions the client performs on smart-
home devices. We convert the datasets into tracefiles of
read/write commands for our implemented KV store, e.g., an
action to turn on a smart-device translates to a write com-
mand with value {"state":"on"} and device ID as key.

We got comparable latency measurement results for both
datasets, which is expected since both datasets contain low-
load, small-request actions typical for a smart-home system;
it is rare to have concurrent clients in a smart-home system.
As can be seen in Figure 14b, the overhead of doing secret-
sharing in OPaxos is negligible compared to higher WAN
latency. The in-house client’s perceived latency for Paxos and
OPaxos are 16.1ms and 16.2ms respectively. The latency for
the in-house client using Fast-OPaxos is higher since a larger
quorum is needed, and there is not much latency savings
because the in-house client is near the leader. However, for
the remote client, we can see that Fast-OPaxos offers lower
latency compared to Paxos and OPaxos: the remote client
experiences around 24% lower latency compared to either.
As a proof-of-concept, we have also integrated OPaxos

into a popular smart-home system, Home-Assistant (HA),
that supports fully-local operation. Internally, HAuses sqlite
to store all updates. Users can manually backup the event
updates [65, 67], but there might be critical updates that are
missing after the last backup. There is a cloud-based backup
plugin available [6], but it only backs up on a single provider
and requires third-party account management. Our OPaxos-
HA integration implements a simple listener for HA events
provides consistent distributed backup storage while con-
fining the perimeter of sensitive information leakage to the
home, a novel combination of features that to our knowl-
edge does not exist in any smart-home system. The purpose
of this minimal proof-of-concept was to validate feasibility
of integration; a more complete integration would require
also implementing checkpoint/recovery mechanisms so as
to maintain consistency between device state and database
state that we have not implemented (but we do not foresee
problems implementing them).

9 RELATEDWORK
To our knowledge, this work is the first to develop a provably
safe crash-fault-tolerant consensus protocol that operates
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Paxos[33] Fast-Paxos[36] RS-Paxos[47] PANDO[63] OPaxos Fast-OPaxos
Privacy-preserving (confidentiality) No No No No Yes Yes
Min. intersection between Q1 and Q2 1 1 t t t t
Client’s Latency (message delay) 4 3 or 2∗ 4 6 or 4∗∗ 4 3 or 2∗
Num. messages to/from the leader∗∗∗ 3𝑛 − 1 2𝑛 3𝑛 − 1 write: 2𝑛 + 2, read: 2𝑛 3𝑛 − 1 2𝑛
Value identifier the value itself the value itself unspecified rand. number/ hash original-ballot original-ballot
∗ Fast-Paxos and Fast-OPaxos reach consensus in one round-trip for a non-executable update when all acceptors directly notify the client, not the coordinator.
∗∗ PANDO does two-rounds write with delegation and one-round read under no conflict; one round-trip more is needed for client to contact a frontend.
∗∗∗ The leader is an elected proposer in Paxos, RS-Paxos, and OPaxos; it is the coordinator in Fast-Paxos and Fast-OPaxos; it is a frontend in PANDO.
Table 3: Paxos variants as well as other consensus protocols with 𝑡 > 1 intersection between the two phases.

over secret shares, however it builds upon a significant body
of closely related work on consensus as well as privacy.
Paxos variants employing similar techniques. Using
quorums with 𝑡 > 1 intersection is not new, for example,
RS-Paxos [47] and PANDO [63] rely on 𝑡 > 1 intersection.
However, their main objective is storage or latency reduction,
which is achieved using erasure-coding. Likewise, CRaft [70]
integrates erasure-coding into Raft [48], and adaptively repli-
cates values either with full replication or erasure-coding
depending on the number of available replicas, which en-
ables it to achieve better availability. In contrast to these,
our work primarily addresses privacy issues using secret-
sharing, a goal not addressed by those works and one that
introduces subtle yet important differences in the protocol
design as well as implementation. Furthermore, we also de-
velop Fast-OPaxos, an optimization to reduce the end-to-end
delay of consensus to at most three one-way delays. Table 3
provides the context to position our work as compared to
closely related prior work.
Secret-Sharing Systems. In the industry, many secret man-
agement systems, like Hashicorp Vault [21] and Mozilla
SOPS [46], use secret-sharing to secure the master key held
by multiple users. Proposed research systems, like Sieve [68],
DepSKY [7], Ghostor [25] also use secret-sharing for similar
purpose. However, they typically assume no concurrency
or use expensive locking to prevent the inconsistency. Our
proposed protocols enable concurrent proposers to broadcast
secret-shares of different values while providing consistency
through the agreement safety property.
Several recent works [5, 8, 64] have studied how to com-

bine secret-sharing into Byzantine Fault Tolerant (BFT) con-
sensus. These works address a harder technical problem than
the one addressed herein by providing stronger guarantees
compared to our work that targets a (benign) crash-prone
failure model. However, like any BFT protocol, they induce a
high quadratic message complexity, and also require a higher
replication factor. They necessitate a more complex secret-
sharing scheme so as to ensure the verifiability property,
which requires quadratic message exchange or an external
PKI. Our position is that, given industry norms and regula-
tory constraints, an honest-but-curious threat model resis-
tant to 𝑡 − 1-collusion as in OPaxos is a point in the design

space that offers a more practically desirable tradeoff be-
tween security guarantees and resource cost and complexity.
Other Privacy-Preserving Systems. Many systems pro-
tect user privacy in different ways, including in smart home
system settings, such as: hiding the access pattern [9, 12, 20,
69], working only on encrypted data [16, 37, 50, 51], or do-
ing private operation using secure multi-party computation
(SMPC) [1, 11, 19, 38]. These approaches are complemen-
tary to OPaxos or too heavy handed for the scenarios of
our interest. SMPC is a powerful approach enabling a state
machine to be distributed across untrusted nodes but incurs
high overhead; for instance, a recent work shows the need of
6-24 additional communication rounds for simple equality,
inequality, and boolean addition operation [38]. Computing
directly on encrypted data, in addition to the drawbacks of
encryption-based approaches previously noted, either incurs
high overhead or limits application generality.

10 CONCLUSION
We present OPaxos and Fast-OPaxos, a novel family of fault-
tolerant privacy-preserving consensus protocols that allow a
set of trusted and untrusted nodes to agree on secret-shared
values while keeping the agreed upon values information
theoretically hidden from the untrusted nodes, a system
setup that is valuable for hybrid cloud deployments with
honest-but-curious cloud nodes. We include rigorous formal
proofs of correctness and TLA+ model checking of OPaxos.
Our prototype-driven microbenchmarks show that OPaxos
induces only a modest latency and capacity overhead in
general, and for large requests, can even improve latency
and capacity compared to traditional Paxos. Our case study
evaluation shows that our approach can improve privacy in
smart home systems from third-party cloud providers while
maintaining high availability and strong consistency.
Our open-source implementation of OPaxos and Fast-

OPaxos can be accessed at: https://opaxos.github.io.
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