
Distributed Consensus Over Secret-Shares
Fadhil I. Kurnia and Arun Venkataramani
fikurnia@cs.umass.edu, arun@cs.umass.edu

University of Massachusetts Amherst, USA

 Paxos - A Distributed Consensus Protocol Privacy-Preserving Consensus Protocol

 Paxos Reveals the Values to all Acceptors

 Encryption Requires Key Escrow

Example use cases: outsourced secret management systems
that have to agree on a single consistent password or private
key, private backups, outsourced private computation (MPC).

Goal: all the nodes agree on the same one
value, even if some of the nodes are crashed.

Progress can be made if one proposer and a
majority of acceptors are alive.

Issue: the value being agreed upon is revealed
to all the acceptors. Agreeing on secret value
becomes an important problem when we
outsource some of the nodes in public cloud
providers that are prone to data breach.

A

P P

A

A

A

A

N1

N2

N3

N5

N4

6

8

7

4

4

5

5

6

8

7

1

2

2

1

phase-1 phase-2

inform decission

v
Proposer

Acceptor

Acceptor

Acceptor

Acceptor

Acceptor

A straighforwad solution is using consensus to
agree on the encrypted value (ciphertext).

Prone to availability issues, especially if the
key get lost.

Require an external key management accessible
by all the trusted parties.

Actors: Proposer, Acceptor, Learner

 Proposers are allowed to know the secret valu
 Acceptors, which must not know the value,

only know secret-share sent by the proposers
 The secret value stay private as long as there

is no t colluding Acceptors
 The protocol metadata (e.g ballot-number,

secret-value’s id) is public
 Need to works despite some nodes crashed
 Acceptors and proposers run the protocol as

specified in a non-byzantine manners.

Goal: Eventually, each learner learns a secret-share that represents the same secret value
agreed by all the acceptors. The learners can not learn secret-shares of more than one value.

System Design, Roles

and Threat Model

Proposer that has unique ballot-number,
deployed in the trusted nodesP

Acceptor (combined with Learner),
deployed in the untrusted nodes

Example: N1, N2, N3, N4, and N5 in the figure

A

We design a distributed consensus protocol that
enables agreement on a secret-shared value with
low overhead. We use (t,n) threshold secret-
sharing that generates n secret-shares, which t
of them are enough to recover the secret.

Combine with Secret-Sharing Consensus

Two quorums in the protocol:
Quorum for Phase 1 and
Quorum for Phase 2.

For example, with n=5, t=2:

This ensures t intersection: the proposer P can
always recover the previously chosen secret-value
from any t secret-shares that P receive in Phase 1.

Example of a quorum for Phase 1, consists of 4 acceptors

Example of a quorum for Phase 2, consists of 3 acceptors
Quorum for Phase 1 and Quorum for Phase 2 intersects in 2 acceptors

Phase-1 quorum size Phase-2 quorum sizeQuorum

Size

n+t

 2

n+t

 2

Pairing Secret-share with Original-Ballot
<secret-share, original-ballot>

Use the original ballot-number as the sid: the ballot-number of the first proposer
that proposes the secret-value. Computationally cheaper & collission-free.

Using hash or random number as the secret-value’s id (sid) is prone to collission.

 Evaluation Setup

For small values, secret-sharing process
induces small latency

Integrating secret-sharing into consensus
has negligible latency overhead

 Measurement Results

1. Proposer sends prepare messages Phase1A{b} with unique ballot-number b to all n

 acceptors.

2. Acceptor A when receiving prepare message:

2.a. A ignores the prepare message if A previously already received messages with higher

 ballot-number.

2.b. Otherwise, A reply the prepare massage. A puts the highest ballot number b and the

 <secret-share, secret-value’s id> pair that A already accepted previously, if any, in the

 response: Phase1B{b, <ss, sid>}

3. Proposer P when receiving a quorum of Phase1B messages containing P’s ballot-number b:

3.a. If P receive at least t secret-shares ss with the same sid, and one of them has the

 highest accepted ballot, then P has to reconstruct the secret value:

 v <- Combine(ss1, ss2, ..., sst), and reuse the same sid.

3.b Otherwise, P can use any secret value v in the next phase and use P’s current ballot-

 number as the secret-value’s id: sid <- b. We call this sid as the original ballot-number.

If a proposer P fail to get a quorum of
responses, in Phase-1 or Phase-2, P can
restart with higher ballot number.Proposer P proposes v

 Phase-1: Prepare
P

P

A

 Phase-2: Propose
Commit

3

3

P ProposerTrusted node

Untrusted node A Acceptor

We deployed n=5 acceptors
in a LAN environment and
use (2,5) secret-sharing
scheme. We implemented
Shamir and SSMS as the
secret-sharing scheme.

